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ABSTRACT: Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood

forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly

related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR)

technology, a potential next-generation weather radar, can provide updates that are at least 4–5 times faster than the

conventional WSR-88D scanning rate. In this study, data collected by the Norman, Oklahoma (KOUN), WSR-88D radar

with;1-min temporal resolution are used as an approximation of data that a future PAR system could provide to force the

Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from

temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min resolution)

are used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such

as those provided by conventional WSR-88D radar (1 km/5min), space-based observations (10-km/30-min), and hourly

rainfall products (1 km/60min). The effect of precipitation sampling errors on flash flood warnings are then examined and

quantified by using discharge simulated from KOUN (1 km/1min) as truth to assess simulations conducted using other

generated coarser spatial/temporal resolutions of other precipitation products. Our results show that 1) observations with

coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of

precipitation; 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets

coarser; and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease

quickly as drainage area increases.
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1. Introduction

Flash floods can develop in minutes to hours, cause damage

across a large spatial area and create life-threatening condi-

tions, thus posing a unique forecast challenge to National

Weather Service (NWS) forecasters. During the 2017 water

year alone, floods accounted for $61.4 billion dollars in damage

and 137 fatalities in the United States, contributing to a 10-yr

(2009–18) average fatality rate that was higher than any other

storm-related hazard (https://www.weather.gov/water/). Ashley

andAshley (2008) found that the flash floods accounted for the

majority of flood fatalities across the contiguous United States

from 1959 to 2005. These studies indicate that improvement in

flash flood forecasting is needed to reduce threats to both lives

and property (Gourley et al. 2017).

Improved precipitation estimates are essential for accu-

rate flash flood warnings. The high variability of precipita-

tion creates a significant source of uncertainty for hydrologic

modeling, especially in steep headwater areas and urban en-

vironments where impervious surfaces can become inundated

on the order of minutes. Accurate quantification of precipita-

tion is directly related to the temporal and spatial sampling of

the observing system.An ideal sensor should be able to capture

both temporal and spatial patterns of a precipitation system

through its high spatiotemporal sampling. However, in reality,

spatiotemporal sampling of observing systems is often limited

(Behrangi and Wen 2017). The discrepancy between ideal

and actual precipitation measurements is mainly due to

technological and financial limitations, hence there are few

studies that discuss the variability of precipitation under

5-min resolution.

A variety of precipitation measurements can be used to

force hydrologic models. Rain gauges, which hydrologists have

traditionally relied upon, provide perhaps the best available

point measurements of precipitation; however, they suffer

from poor spatial coverage and lack areal representation over

land (Kidd et al. 2017). The limited coverage can be prob-

lematic for intense rainfall with high spatial variability, which is

common for flash flooding. Space-based precipitation mea-

surements are also often used to force hydrologic models due

to their complete spatial coverage (Hossain and Anagnostou

2004; Gourley et al. 2011; Maggioni et al. 2013; X. Zhang et al.

2016; Clark et al. 2017). For example, since the spring of 2014,

NASA’s Global Precipitation Measurement (GPM) mission

Integrated Multi-satellite Retrievals for GPM (IMERG;

Huffman et al. 2020) has provided gridded precipitation maps

with a spatiotemporal resolution of 0.18 3 0.18 (corresponding

roughly to a 10-km grid in midlatitude) and 30min globally

(908N–908S) within the latitude band 608N–608S. The coarse

spatiotemporal resolution of IMERG precipitation products,

however, may cause sampling errors that can adversely affect

hydrologic simulations, especially when monitoring flashCorresponding author: Yixin Wen, berry.wen@noaa.gov
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floods. In addition, space-based precipitation measurements

often have underestimation issues (Wen et al. 2018; Bartsotas

et al. 2018). Weather radars provide perhaps the best oppor-

tunity to collect precipitation with both high spatial and tem-

poral resolutions. The current NWS Weather Surveillance

Radar–1988 Doppler (WSR-88D) network has dramatically

increased our ability to observe high-resolution precipitation

data in space and time. Technically, WSR-88Ds are capable

of implementing scanning strategies that would enable fast

scanning with volume update times as low as 1min. However,

the operational WSR-88Ds are still constrained by mechanical

scanning to a ;5-min volume update time for data collection

in flash flooding events [volume coverage patterns (VCPs) 12

and 212; Federal Coordinator for Meteorological Services and

Supporting Research 2013] because the use of those fast scan-

ning strategies is prohibited by constraints designed to ensure

that forecasters have adequate upper-level data in precipita-

tion systems and to reduce unnecessary wear and tear on the

antenna pedestal (Federal Coordinator for Meteorological

Services and Supporting Research 2013). The ground radars

also have limitations in complex terrain where they must rely

on scans at higher-elevation angles, and thus observations

collected from within the ice region of the clouds, to compute

QPE at surface. Since the radar beam broadens with range,

it also becomes more difficult to accurately resolve the verti-

cal structure of precipitation at long ranges (Wen et al. 2013).

In this study, since the primary focus is the examination

of hydrologic uncertainties resulting from temporal and

spatial resolution instead of uncertainties contributed from

instrument calibrations or retrieval algorithms, precipitation

measurements of different resolutions will be mimicked

from KOUN data to avoid the calibration or algorithm

uncertainties.

Research has shown that faster rainfall data update times are

desirable for flash flood early warning, especially in small

catchments (Berne et al. 2004). Phased array radars (PARs)

offer more agile scanning through the use of electronic beam

formation and steering (e.g., Zrnic et al. 2007; Heinselman

and Torres 2011), collect rainfall data at higher temporal

resolutions, and scan the atmosphere and storms adap-

tively at each azimuth position (Heinselman and Torres

2011), and help to reject the unwanted interference signals

by changing the received radiation pattern via adaptive

beamforming (Stoica and Moses 2005; Nai et al. 2016). PARs

are considered a strong candidate to eventually replace the

current WSR-88D network (National Research Council 2002).

To demonstrate the benefits provided by phased array tech-

nology, the National Severe Storms Laboratory (NSSL), in

collaboration with other agencies, has undertaken the devel-

opment of the first S-band, dual-polarization phased array

weather radar [referred to as the Advanced Technology

Demonstrator (ATD)]. However, since the ATD is not yet

ready for operational use, there is a current need for rapid-

update datasets that can be used to assess the benefits of

phased array technology. To address this need, in the spring

of 2013, NSSL conducted the Rapid-Scan Polarization

Experiment (RSPE; Burgess et al. 2014), in which the scan

strategy of the polarimetric KOUN WSR-88D research radar

(located in Norman, Oklahoma) was modified to collect rapid

(;1-min volume), sectorized observations when requested.

Since then, KOUN has been collecting data to serve as an

approximation for those collected by future PARs (Tanamachi

and Heinselman 2016). This study is the first to use single op-

erational radar observations to quantify the variability of

precipitation at unprecedented high spatiotemporal resolution

and examine its impact on hydrologic simulations. In this pa-

per, we use two of those datasets to examine the potential

benefits provided by high temporal and spatial resolution data

for the modeling of flash floods.

Past studies have discussed the sensitivity of streamflow

simulation in urban catchments to the X-band radar spatio-

temporal resolution of precipitation input (Rafieeinasab et al.

2015) and have evaluated the advantages of using X-band

polarimetric radar to improve hydrological application at

hourly resolution in eastern Italian Alps (Anagnostou et al.

2018). The smaller radar systems, such as X-band radar sys-

tems, may have faster updates than the operational S-band

tradition radars. However, the X-band systems, due to their

well-known severe attenuation issues, are not under consid-

eration as potential replacement for the S-band WSR-88 op-

erational radar network. S-band PAR radars, on the other

hand, have been actively studied (Weber et al. 2007; Zrnic et al.

2007) and are recognized as a potential replacement candi-

date for the current operational WSR-88D network across

the United States. The potential of an S-band PAR, rather

than radars that operate at other frequencies, to improve flash

flood warning provides the motivation for this study. The goal

of this study is to leverage the high resolution of rapid-update

KOUN observations to further quantify the uncertainties

in hydrologic modeling of flash floods contributed by high

rainfall variability, which is poorly sampled at low temporal

and spatial resolutions. In doing so, the following questions

are addressed: Do the 1-min data collected by rapid-update

S-band radars improve the detection of flash floods? If so,

what catchment size would benefit most from high-resolution

precipitation measurements? How large are the flash flood

simulation errors resulting from temporal and spatial pre-

cipitation samplings when compared with simulations from

the 1-min KOUN data? These questions will be answered

in the following sections of this paper. In section 2 we describe

the rainfall datasets and the hydrological model used in the

study. Section 3 presents differences among rainfall products

of different spatiotemporal resolutions. Section 4 investigates

the performance of discharge simulations from different

rainfall datasets, and concluding remarks are presented in

section 5.

2. Hydrological model and rainfall dataset

a. Ensemble Framework for Flash Flood Forecasting

TheEnsemble Framework for Flash Flood Forecasting (EF5)

is an open-source framework that encompasses the processes for

flash flood modeling (Flamig et al. 2020). The EF5 is the hy-

drologic modeling engine central to the Flooded Locations and

Simulated Hydrographs (FLASH) project, which is designed
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and optimized to improve NWS forecasters’ ability to monitor

and forecast flash flooding (Gourley et al. 2017). The param-

eterization of EF5’s water balance models using geospatial

datasets is described by Clark et al. (2017). Vergara et al.

(2016) describes a regionalization technique to estimate the

routing parameters in the model channels, which results in a

priori estimates for routing parameters at all grid cells across

the continental United States (CONUS).

The EF5 products include soil saturation (%), discharge

(m3 s21), and discharge normalized by the cell’s upstream

drainage area (referred to as unit discharge; m3 s21 km22). The

unit discharge product is most directly applicable to flash

flood forecasting. The normalization of discharge by basin

area helps to focus the products on those specific locations that

are most likely experiencing anomalous flows, rather than

merely identifying large discharges that occur regularly in

major river systems. In general, a peak unit discharge of

1.5m3 s21 km22 is typically used as one of the flash flood quick

reference guides by NWS forecasters (Martinaitis et al. 2017).

The accuracy of peak unit discharge is important in operational

flash flood monitoring. A robust, statistically sound evaluation

using a decade-long archive of Multi-Radar Multi-Sensor

(MRMS; J. Zhang et al. 2016) radar-only precipitation rates

at 1-km/5-min resolution against 1643 USGS-gauged basins

showed that peak flows simulated by EF5 correlate well

with observed discharges as indicated by a Pearson (linear)

correlation of 0.64 and Spearman (rank) correlation of 0.79

(Gourley et al. 2017). The EF5 model in the FLASH system

with a priori parameters requires no discharge-based calibra-

tion and is a robust tool to conduct the rainfall resolution test in

this study.

TheEF5model is designed to enablemultiscale hydrological

simulations ranging from coarse scale (grid size of tens of ki-

lometers) to fine resolution (grid size of 1 km or less). The

update frequency of the EF5 model may be varied, as fre-

quently as 1-min intervals. To warm up the model states, a

minimum 6-month simulation period is needed. In this study,

all QPE products (KOUN, simWSR88D, simIMERG, and

simHourly) are generated on the same 1 km3 1 km grid as the

digital elevation model resolution and the model update fre-

quency is consistent with each precipitation product’s tempo-

ral resolution. Since KOUN is an event-based research radar

and hence has no continuous precipitation observations,

MRMS radar-only precipitation rates were used to warm up

the model states.

b. Rapid-update polarimetric KOUN observations

In this paper, we focus on observations collected by the

polarimetric WSR-88D (KOUN; Fig. 1) in Norman, Oklahoma.

KOUN served as the prototype polarimetric radar that was

used to demonstrate the operational advantages of polari-

metric observations during the Joint Polarization Experiment

(JPOLE; Ryzhkov et al. 2005b). Validation of the polarimetric

KOUN radar rainfall estimation in previous studies yielded

very positive results, confirming the high quality of the polar-

imetric radar data (Ryzhkov et al. 2005a; Giangrande and

Ryzhkov 2008). After JPOLE, NSSL engineers modified the

KOUN antenna control system software to allow for on-demand,

customized, and sectorized scanning. These modifications en-

able volume update times from 1min to a fewminutes, thereby

making it possible to emulate the rapid-update capabilities of

polarimetric PARs. Two scanning strategies were adopted to

observe the flash flood events that are presented in this study.

The first included four elevation angles (0.58, 1.08, 1.68, and
2.48) that were sampled over a 908 sector with a volume update

time of ;37–38 s. This strategy was used to collect rapid-

update observations from 0353 to 1308 UTC of the 29 April

2017 central Oklahoma flash flood event (Fig. 1a). The second

included two elevation angles (0.58 and 1.08) that were col-

lected over all 3608 in azimuth with a volume update time of

;1min. This strategy was used to collect rapid-update obser-

vations from 2037 to 0900 UTC of the 14–15 August 2018

central Oklahoma flash flood event (Fig. 1b). The 0.58 eleva-
tion angle for this event was used to estimate rainfall rates at

the surface, and the 1.08 elevation angle was used only if there

was excessive ground clutter on the 0.58 elevation angle data.

Both scanning strategies employ data oversampling to achieve

0.58 azimuthal spacing, known as ‘‘super resolution’’ (Brown

et al. 2002). Since the update times of both events are about

FIG. 1. KOUN rapid-scan VCPs: (a) reflectivity data are col-

lected over a 908 sector with 0.58 azimuthal spacing and 250-m

range resolution, with four elevation angles (0.58, 1.08, 1.68, and
2.48) at 0754:59 UTC 29 Apr 2017 and (b) reflectivity data are

collected over 3608 with 0.58 azimuthal spacing and 250-m range

resolution, with two elevation angels (0.58, 1.08) at 0054:57 UTC 14

Aug 2018.
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1min or less, KOUN data used as input for hydrologic sim-

ulations in this study was fixed at 1min by selecting KOUN

measurements at the closest time. Since the update times of

both events are about 1min or less, KOUN data used as input

for hydrologic simulations in this study were fixed at 1min by

selecting KOUN measurements at the closest time. With this

methodology, we understand that we were neglecting tem-

poral variability on the order of a few seconds, but we con-

sider them to be unimportant and will not change the final

conclusions. Note that operational WSR-88Ds have a dy-

namic scanning option calledMultiple Elevation Scan Option

for Supplemental Adaptive Intravolume Low-Level Scan

(MESO-SAILS; Chrisman 2014). When active, anywhere

from one to three supplemental low-level scans can be added

to any volume, increasing overall low-level data availability

to every 75–90 s. Even though higher temporal resolution

datasets have already been collected by WSR-88Ds using

MESO-SAILS in the past, the hydrologic benefits using this

data have still never been demonstrated.

Improvement of QPE is one of the primary benefits of po-

larimetric radars. Polarimetric radars can improveQPE through

the identification and removal of nonmeteorological echoes,

classifying hydrometeors, estimating drop size distributions, and

correcting attenuation in precipitation (Ryzhkov and Zrnic

2019). In this study, the quality-controlled polarimetric vari-

ables collected at 0.58 elevation were used to compute rainfall

rates using the QPE algorithm described by Giangrande and

Ryzhkov (2008), wherein the polarimetric rainfall algorithm

used is determined by an a priori determination of hydrome-

teor type by a hydrometeor classification algorithm (HCA;

Park et al. 2009). Following theHCA,QPE is computed using a

R(Z, ZDR) relation in areas classified as pure rain, and a

R(KDP) relation in areas classified as a rain and hail mixture.

The R(Z) relations with various intercept parameters deter-

mined empirically from comparisons with gauges were used for

different types of frozen hydrometeors. An example of hourly

radar rainfall accumulation from 0800 to 0900 UTC 29 April

2017 using this synthetic polarimetric radar QPE method is

shown in Fig. 2a. In this study, OklahomaMesonet gauge (Van

der Veer Martens et al. 2017) accumulations are used to vali-

date the polarimetric QPE product. The hourly rainfall accu-

mulation observed by Oklahoma Mesonet gauges from the

same time is shown in Fig. 2b. We compare hourly gauge and

radar rainfall accumulations over gauge locations. Scatterplots

and statistics of comparing KOUN hourly precipitation accu-

mulations to collocated rain gauge accumulations for the two

FIG. 2. Hourly accumulation from 0800 to 0900 UTC 29 Apr 2017 derived from (a) polarimetric KOUN data and

(b) Mesonet rain gauge observations. The color bars represent accumulations (mm). Hourly radar-gauge rainfall

accumulation scatterplots for (c) 29 Apr 2017 and (d) 15 Aug 2018 are also included.
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events are shown in Figs. 2c and 2d, indicating good per-

formance of the computed KOUN polarimetric QPE. For

KOUN, the along-radial resolution of the gates is 250m, and

the beam diameters of WSR-88D for beamwidths of 0.938 at
range of 50 and 100 km are 0.81 and 1.62 km, respectively

(Wood and Brown 1997). The precipitation fields from the

KOUN polarimetric QPE algorithm were then interpolated

linearly from the spherical coordinate system (azimuth and

range) into the Cartesian coordinate system centered at

KOUN with a horizontal resolution of 1 km to match spatial

resolution of EF5 model in current FLASH system.

c. Rainfall data with different resolutions

In this study, QPE products with four different resolutions

are used to simulate the discharges. Since the primary focus of

this study is the examination of hydrologic uncertainties

resulting from temporal and spatial resolution instead of un-

certainties contributed from instrument calibrations or re-

trieval algorithms, the other three precipitation products with

coarser resolutions are simulated from 1-km/1-min KOUN

observations. The three simulated QPE products with coarser

resolutions represent three QPE products: 1) 1-km/5-min

rainfall representing the WSR-88D radar observations, 2)

10-km/30-min rainfall representing NASA GPM/IMERG prod-

ucts (Huffman et al. 2020), and 3) 1-km/60-min rainfall to focus

on the hydrologic effect of hourly temporal resolution that is

commonly used by the hydrology community (Gourley et al.

2011). The hydrologic simulations using KOUN rainfall rates

are then used as the benchmark to evaluate the hydrologic

simulations forced by other precipitation products of different

temporal and spatial resolutions. The WSR-88Ds are con-

strained by mechanical scanning to ;5-min volume update

time when 14 elevation angles are used, as in VCPs currently

implemented for data collection in convective storms (VCPs 12

and 212; Federal Coordinator for Meteorological Services and

Supporting Research 2013). Since radar and satellite are taking

instantaneous ‘‘snapshot’’ measurement, theKOUN1-km/1-min

rainfall field was selected every fifth time step to mimic

the WSR-88D 1-km/5-min resolution. To mimic the IMERG

10-km/30-min rainfall, the KOUN 1-km/1-min rainfall field

was selected every 30th time step with the rainfall remapped

to a 10-km grid using the triangulation-based linear interpo-

lation. For the 1-km/60-min rainfall, the KOUN 1-km/1-min

rainfall field was simply selected every 60th time step. A similar

method to test the effect of resolution of satellite QPEs on

hydrologic simulations was adopted in Vergara et al. (2014).

The four rainfall products are listed in Table 1 and are here-

after referred to as KOUN, simWSR88D, simIMERG, and

simHourly. Note that the simIMERG only addresses the

sampling interval and spatial resolution provided by IMERG.

The actual IMERG would bring additional errors from the 3-h

observation interval for satellite data, algorithm errors, and

smoothing in the morphing process.

d. Verification statistics

The two primary goals that we seek to address in this study

are the ability of each precipitation product to 1) detect flash

flooding and 2) accurately quantify the simulated discharge.

Simple contingency table statistics are applied to answer the

first question. In this study, grid points that have a peak unit

discharge greater than 1.5m3 s21 km22, as simulated using the

KOUN 1-km/1-min precipitation product, are defined as flash

flood area. Contingency table statistics describing the proba-

bility of detection (POD), false alarm ratio (FAR), and critical

success index (CSI) are then used to evaluate flash flooding

forecasts that are produced by the other precipitation products.

These indices are computed based on the number of hits H,

false alarms F, and misses M:

POD5H/(H1M) , (1a)

CSI5H/(H1F1M) , (1b)

FAR5F/(H1F) . (1c)

To answer the second question, three statistical indices for

evaluating the simulated discharge are selected. The relative

bias (RB) is used to assess the systematic bias of simulations.

The mean absolute error (MAE) measures the average mag-

nitude of the error while the root-mean-square error (RMSE)

applies more weight to larger errors:

RB5
�P(i)2�K(i)

�K(i)
3 100%, (2a)

MAE5
�jP(i)2K(i)j

N
, (2b)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�[P(i)2K(i)]2

N

s
. (2c)

Here, P(i) and K(i) represent the peak unit discharge

simulated by each of the coarse resolution precipitation

products and the peak unit discharge simulated by KOUN

for the ith grid point, respectively, and N represents the

total number of grid points. Since the three indices are fo-

cused on quantitative measurement rather than detection,

only data pairs with nonzero values from simulations are

considered.

e. Overall experimental design

We summarize our procedure to assess the impact of the

precipitation sampling error on flash flooding forecasts with the

following steps:

d The EF5 hydrologic modeling framework is used to simulate

the discharge and unit discharge.
d MRMS radar-only precipitation rates are used to warm up

the model states.

TABLE 1. A summary of rainfall products tested in this study.

QPE products

Spatial

resolution (km)

Temporal

resolution (min)

KOUN 1 1

simWSR88D 1 5

simIMERG 10 30

simHourly 1 60
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FIG. 3. Precipitation event accumulations for (left) 29 Apr 2017 in the Cottonwood Creek Basin and (right) 14

Aug 2018 in Oklahoma City area.
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d The discharge and unit discharge forced byKOUN1-km/1-min

precipitation product are simulated and taken as truth.
d KOUN rainfall data are resampled into different spatial and

temporal resolutions.
d The EF5 is rerun with simulated precipitation fields of

coarser resolutions.
d The newly simulated discharges are then compared with

those simulated using the original KOUN observations to

assess the propagation of the precipitation sampling errors.

3. High variability of precipitation from a case-study
perspective

In this section, we present two central Oklahoma flash

flood events where the hydrologic modeling covered by the

high spatial and temporal sampling of precipitation. The first

event occurred on 29 April 2017. During this event, wide-

spread rain and high winds impacted much of Oklahoma.

Interstate 235 from North Oklahoma City to Edmond was

closed for several hours because of flooding (source: https://

okcfox.com/news/local/heavy-storms-bring-flooding-road-closures-

to-oklahoma).Widespread flooding of roads with depths up to one

foot in Edmond was reported to NWSChat, an instant messaging

program utilized by NWS operational personnel to share

significant weather information (https://nwschat.weather.gov/).

A press release from the Oklahoma Governor’s office declared a

state of emergency in response to a night of heavy storms. Central

and eastern Oklahoma remained under a flash flood watch as

storms continued tracking through the state the next day (https://

oklahoma.gov/oem/emergencies-and-disasters/2017/20170429-

severe-weather-and-flooding-event.html). As noted in section 2,

rapid-update KOUN data during this event were collected

over a 908 sector that was focused toward the north from 0353 to

1308 UTC (Fig. 1a). Due to the limited rainfall sampling area

resulting from the 908 sector scanused for the data collection, the
study area for this case is only one single basin, the Cottonwood

Creek basin near Seward, Oklahoma (USGS hydrologic unit

07159750), which has a drainage area of 828 km2. Storm total

rainfall accumulations from KOUN in this basin exceeded

100mm with the greatest accumulation extending in a

southwest–northeast-oriented band over the northwest bound of

the Cottonwood Creek basin (Fig. 2a).

The second event started the evening of 14 August 2018.

During this event, severe flooding inundated the Oklahoma

City area, resulting in the Oklahoma City Fire Department

responding to more than 30 calls for assisting vehicles stranded

in high water at different locations around the city (source:

https://www.news9.com/story/5e35da462f69d76f6201b399/flash-

flood-watch-for-most-of-eastern-oklahoma). As noted in section 2,

low-elevation KOUN data were collected over a full 3608 azimuth

with a volumeupdate timeof;1min from2037UTC14August to

0900 UTC 15 August 2018 during this event. Since KOUN pro-

vided a large area of rainfall observations, the study area of this

case includes multiple basins centered on the area of highest flash

flooding impact (98.58–96.98W, 35.08–35.98N). Themaximum12-h

storm rainfall accumulations from KOUN approached 100mm

with the greatest accumulations over southern Oklahoma City

and northern Norman (Fig. 2b).

Figures 3a–h show maps of total precipitation accumulation

from the four products for the 29 April 2017 and 14 August

2018 events. KOUN data with resolution of 1km/1min (Figs. 3a,b)

are used as a reference for total precipitation comparison.

Figures 3c and 3d show that the KOUN and simWSR88D

(1 km/5min) products are fairly consistent in capturing the

precipitation pattern in the research area, although simWSR88D

shows an overestimation compared to KOUN at ;36.658N,

97.658W (Fig. 3c) on 29 April 2017. However, large discrep-

ancies exist compared toKOUN for simIMERG(10 km/30min)

and simHourly (1 km/60min). For 29 April 2017, simIMERG

fails to show the precipitation pattern or the gradient of pre-

cipitation decreasing along a northwest–southeast direction,

while simHourly presents extremely low precipitation to the

east of the heavy rainband (35.78N, 97.78W) and a false area

of high rainfall north of Oklahoma City (35.68N, 97.68W).

For 14 August 2018, simIMERG and simHourlyQPE capture

the general areal extent of the precipitation but fail to indicate

where the heaviest rain actually fell. Both cases demonstrate

that observations with coarse spatial and temporal sampling can

cause large errors in quantifying precipitation amount.

Coarse sampling also causes errors in quantifying precipi-

tation intensity and distribution. Figure 4 displays maps of

hourly rainfall accumulation from 0700 to 0800 UTC 29 April

FIG. 4. Hourly accumulation from 0700 to 0800UTC 29Apr 2017

derived from (a) KOUN data with 1-min temporal resolution and

(b) simWSR88D data with 5-min temporal resolution.
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2017 derived fromKOUN data with 1-min temporal resolution

and from simWSR88D data with 5-min temporal resolution.

The KOUN hourly accumulation shows smooth rain fields,

while the simWSR88D hourly accumulation has discontinu-

ities. Figure 5 shows the rainfall rate observed at 0700 UTC

29 April 2017 by KOUN at 1-km spatial resolution and

simIMERG at 10-km spatial resolution. The fine-scale rainfall

patterns are lost when spatial resolution is coarser. Over- and

underestimation errors can be identified by the difference be-

tween KOUN precipitation rate and simIMERG rainfall rates

(Fig. 5). These discrepancies are due to the high spatial and

temporal variability of natural precipitation and are important

to consider because these errors will negatively affect hydro-

logic simulations and applications.

4. Flash flood simulations using different
precipitation products

Figure 6 shows the time series of rainfall rates and simulated

discharges at the Cottonwood Creek stream gauge near

Seward, Oklahoma (USGS hydrologic unit 07159750) on

29 April 2017. As can be seen in Fig. 6b, the peak rain rate

decreases as the temporal resolution gets coarser. It is also

evident that the precipitation bias results from poor spatial and

temporal sampling propagates in the streamflow simulations.

Figure 6c shows that the discharge generated by rapid-update

KOUN data better matches stream gauge observations than

those generated by the precipitation products with coarser

resolution. Note that all simulations underestimate discharge

compared to the stream gauge observations. The negative bias

may come from radar measurement error, retrieval algorithm un-

certainty, hydrologicmodel uncertainty, and precipitation sampling

error. In this paper, we only consider the effects of precipitation

sampling error on the flash flood forecasts. Therefore, we took

simulated discharge forced by KOUN as truth to assess other

simulations rather than discussing the underestimation of all the

simulations compared to the streamgauge observations. Compared

to peak discharge from KOUN at the stream gauge location, the

peak discharge from simWSR88D, simIMERG, and simHourly is

reduced by;10%, 33%, and 43%, respectively.

Figure 7 presents the EF5 peak unit discharge product

forced by KOUN observations for the two cases. On 29 April

2017, peak unit discharges exceed 3m3 s21 km22 in the south-

eastern part of the basin (Fig. 7a), which is consistent with

NWSChat reports. It is interesting to point out that the

heaviest precipitation occurred in the northwestern part of the

FIG. 5. Rainfall rate at 0700 UTC 29 Apr 2017 from (a) KOUN of 1-km spatial resolution and

(b) simIMERG of 10-km spatial resolution.

1920 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 02:47 PM UTC



FIG. 6. (a) Example of instantaneous rainfall rate measured by KOUN at 0718 UTC 29 Apr

2017. (b) The time series data of different precipitation data at different temporal-spatial

resolutions. (c) The time series data of simulated streamflow simulated from different pre-

cipitation data. In (c), the dotted gray line is observation from a USGS stream gauge

(Cottonwood Creek near Seward, USGS hydrologic unit 07159750). The location of the time

series data is from the stream gauge noted by the red dot in (a).
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basin (Fig. 3a), not in the southeastern part where the most

severe flooding impacts were reported. Due to the extent

in impervious surfaces in the Oklahoma City metropolitan

area, the EF5 model has very low or no infiltration in some

areas, resulting in high values of runoff. The location mis-

match of heaviest precipitation and flash flood occurrence

indicate that the precipitation errors do not propagate lin-

early in the flash flood simulation. Basin physiographic and

morphological characteristics, such as basin slope, drainage

ratio, basin magnitude, infiltration rates, ruggedness num-

ber, etc., will influence the effects of precipitation sam-

pling errors on flash flood forecasts. The peak unit discharge

for 14 August 2018 is displayed in Fig. 7b. The peak unit

discharge exceeds 6 m3 s21 km22 in southern Oklahoma

City, corresponding closely with media reports.

The magnitude of peak unit discharges simulated from

coarse-resolution precipitation products are assessed by

comparing them to the KOUN simulations (Fig. 8). The

simWSR88D simulations (Fig. 8a) show a consistent negative

bias over the study area for both events, while simIMERG

(Fig. 8b) and simHourly (Fig. 8c) simulations have both posi-

tive and negative biases when compared to KOUN simula-

tions. In particular, it is easy to notice that the spatial patterns

of the bias for simIMERG-based simulations (Fig. 8b) depict

the 10-km grid pixel. This is due to the higher spatial resolu-

tion of the hydrologic model’s computational grid. The right

column of Figs. 8b and 8c shows that the area of positive bias

is adjacent to the area of negative bias, which indicates

simIMERG and simHourly sampling frequency has difficulty

capturing the movement of precipitation in fast-moving storms

or isolated convective system.

To estimate the negative impact on forecasting flash flood

occurrence due to the degradation of resolution, simplemetrics

derived from contingency table statistics (i.e., POD, FAR, and

CSI) are used.Weassumed the unit discharge of 1.5m3 s21 km22

was the flash flood threshold and grid points with unit discharge

of KOUN simulations greater than 1.5 are marked as flash

flood grid points. Then we counted the number of the hits,

misses, and false alarms of other QPE-based simulations.

Table 2 shows the POD, FAR, and CSI for hydrological

simulations forced by the simWSR88D, simIMERG, and

simHourly precipitation products. Table 3 shows the RB, MAE,

and RMSE for hydrologic simulations by the simWSR88D,

simIMERG, and simHourly benchmarked by KOUN. The

quantitative evaluation statistics indicates the hydrologic sim-

ulation from simWSR88Donly has slight underestimation. The

29 April 2017 event is not a significant flash flood event, which

means the streamflow peak barely passes the flash flood

threshold in many grids. A slight underestimation of stream-

flow would be below the threshold and thus misses the flash

flood event. Overall, simWSR88D data have the highest ca-

pacity to detect flash flood area compared to simIMERG and

simHourly. On 29 April 2017, the quantitative evaluation sta-

tistics indicates the hydrologic simulation from simWSR88D

only has slight underestimation; however, simWSR88D data

have a low POD of 0.46, indicating that simWSR88D data

missed more than 50% of the flash flooding grid points.

Nijssen and Lettenmaier (2004) studied the effect of error

in accumulated precipitation at 0.58 3 0.58 spatial resolution,
due to periodic sampling (1, 3, and 6 h) of the precipitation rate,

and found that streamflow errors were large for small drain-

age areas (5 3 103 km2) and generally decrease for drainage

areas up to 500 3 103 km2. In this study, we also investigated

the effect of precipitation sampling errors as a function of

upstream drainage area but at the flash flood scale (i.e.,

drainages , 1000 km2), where information with higher reso-

lution is required. Examples of streamflow time series with

different drainage areas are presented in Fig. 9, from a 1-km2

drainage area to a river channel of 916 km2.With drainage area

increasing, the hydrographs change from narrow and sharp

depicting flashy response typical of basin headwaters, to wide

and smooth depicting slower response typical of main river

stems. In addition, the differences between KOUN simula-

tions and simWSR88D simulations diminish as drainage area

increases. The behavior of the simIMERG and simHourly

FIG. 7. Maximum unit discharge simulation using KOUN

1-min/1-km observations (a) from 0300UTC 29Apr 2017 to 0000 UTC

2 May 2017 and (b) from 2100 UTC 14 Aug 2018 to 0000 UTC

17 Aug 2018. The thick black lines indicate the boundaries of

the basins, the thin black lines indicate the main streams, and

the blue lines are the county boundaries.
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simulation time series at a single grid is not enough to explain

the effects of sampling errors in precipitation, as the 60-min

snapshot temporal sampling intrinsically create dramatic

random error in precipitation and the averaging of all fine

1-km resolution grids into 10-km grid also causes large over-

and underestimation errors. A larger statistical sample is

FIG. 8. Bias of peak unit discharge forced by (a) simWSR88D, (b) simIMERG, and (c) simHourly, compared to

the unit peak discharge simulated by KOUN for (left) 29 Apr 2017 and (right) 14 Aug 2018. Note that to dem-

onstrate the small bias of simWSR88D in (a), the color bar ranges from 20.3 to 0.3m3 s21 km22, while in (b) and

(c) color bars range from 21 to 1m3 s21 km22.
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needed to analyze the drainage area impact over the whole

study area.

Figure 10 shows the statistics (RB, MAE, and RMSE)

of unit discharge relative to basin area using KOUN

simulations as a benchmark. All statistics show a trend of

improving values with increasing basin area, consistent with the

findings inNijssen and Lettenmaier (2004). The simWSR88Ddata

show the best statistics among the three precipitation products as

we expected. As shown in Fig. 10, the simIMERG simulations

have lower MAE and RMSE than the simHourly simulations in-

dicating the streamflow simulation driven by QPE at 10-km/30-

min resolution is better than that driven by QPE at 1-km/1-h res-

olution. The degraded temporal resolution (1h vs 30min) has

larger negative impact on flash flooding discharge simulations than

the spatial resolution (10 vs 1km). This result indicates the im-

portance of temporal resolution of precipitation input on flash

flooding warning.

5. Probabilistic study of the different precipitation
products

Since both radars and satellites essentially take instanta-

neous ‘‘snapshot’’ measurements, the KOUN 1-km/1-min

rainfall field was selected every 5th, 30th, and 60th time step

to mimic the WSR-88D, IMERG, and hourly QPE products,

respectively. However, the hydrologic uncertainties quantified

by different temporal resolutions derived from a deterministic

method could be incomplete. For example, if the fifth time step

of rainfall rate is the lowest value among the five 1-min ob-

servations in a 5-min period, the hydrologic simulation will

probably yield a very low discharge. If the fifth time step of

rainfall rate is the highest in the 5-min period, the hydrologic

simulation will be very close to the 1-min benchmark. To

evaluate the impact of the different precipitation products, a

probabilistic approach is adopted to simulate the distributions

of precipitation rates at different resolutions. A probabilistic

description of the QPE products is most appropriate to ac-

knowledge the possible range of outputs from the 5-min,

30-min, and 60-min simulations that might result from sam-

pling the 1-min KOUN data.

To describe this approach, we use the derivation of proba-

bilistic 5-min QPE products. First, we generate 50 random

numbers from Student’s t distribution since the sample size is

small. Then we calculate the mean and standard deviation of

the sample mean of the five 1-min rainfall rate within each

TABLE 2. The contingency table statistics benchmarked by

KOUN simulations. The best performance according to the sta-

tistic is denoted in boldface.

Event date QPE products POD FAR CSI

29 Apr 2017 simWSR88D 0.46 0.33 0.38

simIMERG 0.08 0.98 0.01

simHourly 0.38 0.98 0.02

14 Aug 2018 simWSR88D 0.83 0.00 0.83

simIMERG 0.36 0.50 0.26

simHourly 0.48 0.72 0.22

TABLE 3. Statistical results of the maximum unit discharge

benchmarked by KOUN simulations. The best performance ac-

cording to the statistic is denoted in boldface.

Event date QPE products RB (%) MAE RMSE

29 Apr 2017 simWSR88D 27.45 0.04 0.10

simIMERG 4.11 0.26 0.55

simHourly 98.11 0.58 1.63

14 Aug 2018 simWSR88D 27.96 0.04 0.11

simIMERG 217.01 0.35 0.97

simHourly 32.50 0.47 1.03

FIG. 9. Time series of simulated discharge from different loca-

tions of different drainage areas: (a) from drainage area of 1 km2

(location A denoted as a black dot in Fig. 7b), (b) from drainage

area of 13 km2 (point B in Fig. 7b), (c) from drainage area of 44 km2

(point C in Fig. 7b), and (d) from drainage area of 916 km2 (point D

in Fig. 7b).
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5-min interval. Next, we use the mean and standard deviation

of the sample mean to scale the 50 random numbers and make

them statistically match the five 1-min rainfall rate observa-

tions. Finally, 50 sets of 5-min QPE products are generated

from the 1-min baseline product and are used to drive the EF5

hydrologic model. The same approach is also applied to derive

50 sets of 30-min QPE products and 50 sets of hourly QPE

products.

The example of discharge time series from probabilistic

precipitation products is shown in Fig. 11. The medians of

50 members of hydrologic simulations from each QPE with

coarser resolution are also presented in Fig. 11. There are two

members of discharge simulation from simWSR88 5-min

product having a higher peak discharge than the 1-min base-

line simulation. However, the ensemble median value of the

50 discharge simulations of the 5-min product has a lower peak

discharge than the 1-min simulation. The median of simula-

tions from hourly QPE products has the lowest peak discharge

of the four resolution QPE products. The results of probabi-

listic QPE simulations are consistent with the deterministic

simulation results in previous sections.

Figure 12 shows the distribution of statistics (RB,MAE, and

RMSE) of unit discharge relative to basin area using KOUN

simulations as a benchmark. Similar to the results shown in

Fig. 10, the ensemble median of all statistics shows a trend of

improving values with increasing basin area. The simWSR88D

output shows the best statistics (lowest RB, MAE, and RMSE)

among the three precipitation products and smallest standard

deviation from the median value for MAE (Fig. 12b) and

RMSE (Fig. 12c). The simIMERG has the largest standard

deviation when basin area is smaller than 100 km2. This result is

consistent with simIMERG’s spatiotemporal resolution of

10 km. The distribution of the simIMERG simulations has

lower MAE and RMSE than the simHourly simulations in

small basin areas indicating the stream flow simulation driven

by QPE at 10-km/30-min resolution is better than that driven

by 1-km/1-h products when the basin area is small. The de-

graded temporal resolution (1 h vs 30min) has a larger negative

impact on flash flooding simulations than the degraded spatial

resolution (10 vs 1 km) for small basins. However, when basin

area is greater than 20 km2, the MAE and RMSE are similar to

10-km/30-min and 1-km/1-h products.

6. Summary and conclusions

This study demonstrates the high variability of precipitation

captured by rapid-update KOUN radar observations and in-

vestigates its hydrologic impacts on flash flood simulations. The

effect of precipitation sampling errors on flash flood forecast-

ing was investigated using rapid-update KOUN precipitation

observations at 1 km3 1 km resolution updating every;1min

to force the EF5 hydrological model. The simulated discharge

from KOUN was then used as truth to assess simulations from

three other precipitation products that had degraded spatial

and/or temporal resolutions. The main findings are summa-

rized as follows:

1) Observations with coarse spatial and temporal sampling can

cause large errors when quantifying precipitation amount,

FIG. 10. Statistical results of simulated unit discharge as a function

of drainage area with KOUN simulations as reference.
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intensity, and distribution. The simWSR88D (5km/1min)

products are fairly consistent with KOUN (1 km/1min)

products in precipitation event accumulations, while

simIMERG (10 km/30min) and simHourly (1 km/60min)

showed large discrepancies when compared to KOUN

storm accumulation. The KOUN hourly accumulation

showed smooth rain fields, while the simWSR88D hourly

accumulation has discontinuities.

2) Time series of precipitation products showed that QPE

peak value decreased as the temporal resolution got coarser.

Discharge simulated from KOUN better matched stream

gauge observations than those generated by the coarser

resolution precipitation products. Compared to KOUN

simulations for 29 April 2017, the peak discharge from the

simWSR88D, simIMERG, and simHourlyQPE simulations

was smaller by ;10%, 33%, and 43%, respectively.

3) The simWSR88D data had the highest detectability in

terms of POD when using a flash flood threshold of

1.5m3 s21 km22, but the CSI of simWSR88D simulations

was as low as 0.46 for the 29 April 2017 case.

4) The effect of precipitation sampling error on flash flood

forecasting was dependent on upstream drainage area.

Streamflow errors were large in headwater basin areas and

decrease quickly as drainage area increases. Metropolitan

areas located in headwater areas would have the greatest

need for rapid-update KOUN precipitation data.

5) The probabilistic approach shows that the degraded tem-

poral resolution has a larger negative impact on flash

flooding simulations than the degraded spatial resolution

for small basins.

The mismatch of heaviest precipitation area and flash flood

impacted area indicated that the effect of precipitation

FIG. 11. Time series of simulated discharge from different probabilistic precipitation

products from (a) 29 Apr 2017 and (b) 15 Aug 2018. The light lines indicate the simu-

lations from 50 members, and the thick lines indicate the median value of 50 hydrologic

simulations.
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FIG. 12. Distribution of statistics of simulated unit discharge as a function of drainage area

with KOUN simulations as reference. The thick lines represent the ensemble median of sta-

tistics and the shaded area represent one standard deviation from the ensemble median.
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sampling errors on hydrologic simulation may be influenced by

basin physiographic and morphological characteristics. When

this research is extended to the whole country, basin mor-

phology needs to be considered to decide the regions that

need rapid-update radar precipitation observations the

most. Such analyses can provide hydrologic insights for fu-

ture upgrades to the current operational WSR-88D net-

work. A future PAR network with rapid-update scanning

ability could benefit the hydrologic and meteorological

communities by decreasing precipitation errors resulting

from degraded spatial and temporal sampling, and therefore

improve flash flood monitoring.
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Giangrande, and D. S. Zrnić, 2005b: The Joint Polarization

Experiment: Polarimetric rainfall measurements and hydro-

meteor classification. Bull. Amer. Meteor. Soc., 86, 809–824,

https://doi.org/10.1175/BAMS-86-6-809.

Stoica, P., and R. Moses, 2005: Spectral Analysis of Signals.

Pearson, 447 pp.

Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, po-

larimetric observations of central Oklahoma severe storms on

31 May 2013. Wea. Forecasting, 31, 19–42, https://doi.org/

10.1175/WAF-D-15-0111.1.

Van der Veer Martens, B., B. G. Illston, and C. A. Fiebrich, 2017:

The Oklahoma Mesonet: A pilot study of environmental

sensor data citations. Data Sci. J., 16, 47, https://doi.org/

10.5334/dsj-2017-047.

Vergara, H., Y.Hong, J. J. Gourley, E. N. Anagnostou,V.Maggioni,

D. Stampoulis, and P. E. Kirstetter, 2014: Effects of resolution

of satellite-based rainfall estimates on hydrologic modeling

skill at different scales. J. Hydrometeor., 15, 593–613, https://

doi.org/10.1175/JHM-D-12-0113.1.

——, P.-E. Kirstetter, J. Gourley, Z. Flamig, Y. Hong, A. Arthur,

and R. Kolar, 2016: Estimating a-priori kinematic wave model

parameters based on regionalization for flash flood forecasting

in the conterminous United States. J. Hydrol., 541, 421–433,
https://doi.org/10.1016/j.jhydrol.2016.06.011.

Weber,M. E., J. Y. Cho, J. S. Herd, J. M. Flavin,W. E. Benner, and

G. S. Torok, 2007: The next-generation multimission U.S.

surveillance radar network. Bull. Amer. Meteor. Soc., 88,
1739–1752, https://doi.org/10.1175/BAMS-88-11-1739.

Wen, Y., Q. Cao, P.-E. Kirstetter, Y. Hong, J. J. Gourley, J. Zhang,

G. Zhang, and B. Yong, 2013: Incorporating NASA spaceborne

radar data into NOAA National Mosaic QPE system for im-

proved precipitation measurement: A physically based VPR

identification and enhancement method. J. Hydrometeor., 14,

1293–1307, https://doi.org/10.1175/JHM-D-12-0106.1.

——,A.Behrangi,H.Chen, andB.Lambrigtsen, 2018:Howwellwere

the early 2017 California Atmospheric River precipitation events

captured by satellite products and ground-based radars? Quart.

J. Roy.Meteor. Soc., 144, 344–359, https://doi.org/10.1002/qj.3253.
Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on

single-Doppler velocity signatures of mesocyclones and tor-

nadoes.Wea. Forecasting, 12, 928–938, https://doi.org/10.1175/

1520-0434(1997)012,0928:EORSOS.2.0.CO;2.

Zhang, J., and Coauthors, 2016:Multi-RadarMulti-Sensor (MRMS)

quantitative precipitation estimation: Initial operating capa-

bilities. Bull. Amer. Meteor. Soc., 97, 621–638, https://doi.org/
10.1175/BAMS-D-14-00174.1.

Zhang, X., E. N. Anagnostou, and H. Vergara, 2016: Hydrologic

evaluation of NWP-adjusted CMORPHestimates of hurricane-

induced precipitation in the southern Appalachians. J. Hydrol.,

17, 1087–1099, https://doi.org/10.1175/JHM-D-15-0088.1.

Zrnic, D. S., and Coauthors, 2007: Agile-beam phased array radar

for weather observations. Bull. Amer. Meteor. Soc., 88, 1753–

1766, https://doi.org/10.1175/BAMS-88-11-1753.

JULY 2021 WEN ET AL . 1929

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 02:47 PM UTC

https://doi.org/10.1175/2008WAF2222205.1
https://doi.org/10.1016/j.jhydrol.2015.08.045
https://doi.org/10.1016/j.jhydrol.2015.08.045
https://doi.org/10.1175/JAM2213.1
https://doi.org/10.1175/BAMS-86-6-809
https://doi.org/10.1175/WAF-D-15-0111.1
https://doi.org/10.1175/WAF-D-15-0111.1
https://doi.org/10.5334/dsj-2017-047
https://doi.org/10.5334/dsj-2017-047
https://doi.org/10.1175/JHM-D-12-0113.1
https://doi.org/10.1175/JHM-D-12-0113.1
https://doi.org/10.1016/j.jhydrol.2016.06.011
https://doi.org/10.1175/BAMS-88-11-1739
https://doi.org/10.1175/JHM-D-12-0106.1
https://doi.org/10.1002/qj.3253
https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.1175/JHM-D-15-0088.1
https://doi.org/10.1175/BAMS-88-11-1753

